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In this paper we extend the uniqueness result of Bojanic and DeVore [Enseign.
Math. 12 (1966), 139-164] concerning best one-sided polynomial L I-approximation
on compact intervals to the case of unbounded real intervals. We show that
Theorem 3 of the above reference continues to hold in case of noncompact intervals
of approximation. © 1989 Academic Press, Inc.

1. INTRODUCTION

In the present literature, one-sided polynomial LI-approximation has
been considered under two different points of view. One aspect is con
cerned with the question of "goodness of fit" and yields Jackson- or even
Bernstein-type results depending on the smoothness of the approximated
function and the degree of the polynomials. The first essential result in this
direction goes back to Freud [3]; for the case of unbounded intervals
which is of interest here, we also mention [4-7, 10, 11]. The other question
of interest is connected with the existence, uniqueness, and characterization
of best one-sided polynomial LI-approximations and is related to moment
theory and numerical quadrature. The first paper dealing with these
questions was written by Bojanic and DeVore [1]; generalizations and
extensions of their results concerning more general finite dimensional
function spaces instead of polynomials of fixed degree were given in
[2,9,12,13]. However, as far as we know uniqueness questions in one
sided LI-approximation have always been considered with respect to
compact intervals of approximation and all proofs of uniqueness implicitly
make use of compactness arguments which do not work in case of
unbounded intervals. In this paper we therefore want to make a first step
to overcome this problem. We will show that Theorem 3 of [1] is valid in
case of noncompact intervals, too.
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2. NOTATION

Let - 00 ~ a < b ~ 00 be given and let [a, bJ be the corresponding real
interval with an obvious modification in case of a = - 00 and/or b = 00.

For any extended real valued function/defined on [a, bJ, let LA!) be the
class of all polynomials p of degree at most n (shortly: p E lln) satisfying the
condition p(x) ~/(x) for all x E [a, b]. Moreover, let It be an arbitrary
nonnegative Borel measure on [a, bJ such that all polynomials are
integrable with respect to It on [a, bJ and

rIq(t)J dlt(t)=O
a

for some polynomial q implies q = O. Now, the class BLn(f) of best lower
L,-approximations of / with respect to It is defined to consist of those
polynomials p* E Ln(f) satisfying

J: p*(t) dlt(t) = sup {J: p(t) dlt(t)1 p E Ln(f)}.

From now on, we presume that / is integrable over [a, bJ with respect to
It, shortly /EL'{[a, b]. (For the sake of completeness let us note that the
existence of a It-integrable majorant of/on [a, bJ would be sufficient to get
all results following.) Moreover, we presuppose that / possesses at least one
polynomial minorant on [a, bJ of degree at most n, i.e., Ln(f) #- 0. Since
It induces a norm on the finite dimensional space lIn standard arguments
yield that BLn(f) #- 0; i.e., / has at least one best lower L,-approximation
of degree at most n (compare Theorem 1 of [1 J). While the existence of a
polynomial of best one-sided approximation has been established under
very general hypotheses, the example given by Bojanic and DeVore [1 J
which immediately works in case of unbounded intervals, too, shows that
a polynomial of best one-sided approximation is not necessarily unique
even for continuous functions which are differentiable on [a, bJ with the
exception of a finite number of points. In the following we will show that
according to the results in the compact case for / being continuous and
differentiable on (a, b) we obtain that BLn(f) consists of precisely one
polynomial; in other words, that the best one-sided L,-approximation
problem has a unique solution.

3. THE UNIQUENESS THEOREM

In this section we will prove the following theorem which may be inter
preted as a generalization of Theorem 3 of [1 J by including noncompact
intervals.
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THEOREM. Let n e No and - 00 ~ a < b ~ 00 be given. Moreover, let J.l be
a nonnegative Borel measure on [a, b] satisfying the conditions formulated
in Section 2 andfe Lt[a, b] continuous on [a, b] and differentiable on (a, b)
with LA!) -# 0. Then BLn(f) consists of one and only one element.

To prove the above theorem we need two preparatory lemmas.

LEMMA 1. Let n e No be even and - 00 ~ a < b ~ 00. Moreover, let J.l be
a nonnegative Borel measure on [a, b] satisfying the conditions formulated
in Section 2 andfe LHa, b] continuous on [a, b] with Ln(f) -# 0. Thenfor
each p e BLn(f) the nonnegative functionf - p has at least nl2 zeros in (a, b).

Proof In case n = 0 the conclusion is obviously true. So, from now on
n may be even and different from zero.

(a) -00 <a and b< 00. Compare [1, Lemmas 3 and 4].

(b) -00 = a and b = 00. Let us assume that f - p has at most (n12 - 1)
real zeros which may be numbered in increasing order: Xl < X2 < ... < Xk

with k ~ nl2 - 1. If f - p has no zero we always put any of the following
factors containing Xl' ... , X k equal to 1. Now, with the help of the polyno
mials

2 2 1QAx):=(r+x)(x-xd ",(x-xd (r-x)--, reN,
r

we will show that the above assumption of the number of zeros off- p will
lead to a contradiction to p E BLn(f). Obviously, the polynomials Qr satisfy
Qr e Iln for all r eN. Moreover,

foo (2 2 2 1)
- -00 t (t-xd .. ·(t-Xk) +;- dJ.l(t)

tends to infinity for r -+ 00. Therefore, we may choose R eN such that we
have simultaneously

and

By the construction, the set K:= {x E IR IQ R(X);;::: O} c [ - R, R] is
compact and not empty. Since
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we have Xl' ..., Xk ¢ K. So, by the continuity off- p we can find a constant
d>°such that

f(x) - p(x) ~ d for all x E K.

Let II Q R II ~- R. R] denote the maximum norm of Q R with respect to
[ - R, R]. Define

p*(x) := p(x) + d(11 QR II ~-R. R])-l QR(X).

p* is a polynomial of degree at most n satisfying

f(x) _ p*(x) ~ {f(X) - p(x) - d~ 0,
f(x) - p(x) ~ 0,

XEK

x E IR\K

and

This gives the desired contradiction to p E BLn(f).

(c) - 00 = a and b < 00. As above using the polynomials

2 2 1Qr(x):=(r+x)(x-xd ",(x-xd (b-x)--, rEN.
r

(d) -00 <aandb= 00. As above using the polynomials

2 2 1Qr(x):=(x-a)(x-xd .. ·(x-xk) (r-x)--,
r

rE N. I

or b < 00,if -oo<a

LEMMA 2. Let n EN be odd and -00 ~ a < b ~ 00. Moreover, let jJ. be a
nonnegative Borel measure on [a, b] satisfying the conditions formulated in
Section 2 andfELHa,b] continuous on [a,b] with L n(f)#0. Then for
each p E BLn(f) the nonnegative function f - p has at least

n+l
-2-zeros in [a, b]

n-l
-2- zeros on IR if -oo=a and b = 00.

Proof (a) -00 < a and b < 00. Compare [1, Lemma 3].

(b) -00 = a and b = 00. Since in case n = 1 the conclusion is obviously
true we may assume n ~ 3.
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Now, the proof is the same as in Lemma 1 using the polynomials

2 2 1
Q,(x):=(r+x)(x-xd "'(X-Xk) (r-x)--, rEN.

r
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Note that k ~ (n - 1)/2 - 1 implies Q, E JIn _ I; i.e., in this case the maximal
possible degree of Q, cannot be attained. This fact causes the difficulties
when proving the uniqueness theorem for IR in case of n odd.

(c) - 00 = a and b < 00. As in Lemma 1 using the polynomials

2 2 1
Q,(x):=(r+x)(x-xd ",(x-xd --, rEN.

r

(d) -00 < a and b = 00. As in Lemma 1 using the polynomials

2 2 1
Q,(x):=(x-xd .. ·(x-xk) (r-x)--,

r
rE N. I

Proof of the Theorem. First of all, by Theorem 3 of [1] the case
- 00 < a and b < 00 is settled.

Let us now assume that there exist two polynomials PI and P2 satisfying
PI' P2 E BLn(f)· It can be easily shown that P := !(PI +P2) also lies in
BLn(f) and thatf(z) - p(z) = 0 for some ZE [a, b] implies PI(Z) =P2(Z) =
f(z). Moreover, iff(z) - p(z) = 0 and ZE (a, b) we also have p~(z) =p;(z)=
f' (z). For a proof of these facts we refer the reader to [1].

(1) n E No and n even. By means of Lemma 1 the nonnegative function
f - P has at least nl2 zeros in (a, b) which may be numbered in increasing
order a<x l < .. ·<xn/2<b. This implies thatpI(x;)=P2(x;) and P'I(X;) =
p;(x;), 1~ i ~ n12, i.e., that there exists a real constant M satisfying

Since PI' P2 E BLn(f) we also have

which gives

O=M·r (t- x d2 ... (t-x n/ 2)2djl(t).
a

Therefore, M = 0 and PI = P2'
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(2) n E Nand n odd.

(2.1) -00 = a and b = 00. By means of Lemma 2 the nonnegative
function f-p has at least (n-l)/2 real zeros, x I <"'<X(n-Il/2' This
implies PI(X;) = P2(X;) and p~(x;) = p;(x;), 1~ i ~ (n - 1)/2.

If PI and P2 have the same leading coefficient then PI - P2 E Iln_1 and
there exists a constant ME IR satisfying

As in (1) this implies M = 0 and PI =P2'
On the other hand, if PI-P2EIln\Iln_1 then there exists a point ZEIR

(which may be equal to one of the x;) and a constant ME IR satisfying

Without loss of generality we may have M ~ O. Since we want to show that
M = 0 we assume the contrary: M> O. Now, we define

2 2 1
QAx):=(x-xd "'(X-X(n_I)/2) (x+r)--, rEN.

r

Obviously, we have Qr E Iln for all r EN. Moreover,

foo (2 2 1)+ -00 t(t-xd ···(t-x(n-1ld -~ dJ1.(t)

tends to infinity for r --+ 00. Therefore, we may choose R EN such that we
have simultaneously

and R > max {I XII + 1, ..., IX(n-Il/21 + 1, IZ 1+ I}. The last requirement
implies that QR(X) < 0 for x ~ -R and that QR(X) ~ 1 for x> R. By the
above construction the compact set K: = {x E [ - R, R] IQR(x) ~ O} is not
empty and does not contain any of the points x I' ... , X (n _ I )/2 since
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So, by the continuity of f - p there exists a constant d> 0 such that
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f(x) - p(x) ~ d for all x E K.

Again, let II QR II ~~R. R] denote the maximum norm of QR with respect to
[ - R, R] and define

Now, we show that there exists a constant,2> 0 satisfying

for all x E (R, 00).
Obviously, it is sufficient to prove that there exists,2> 0 satisfying

i.e.,

Since

M(x-z)
'2~ 2(x+R)'

X E (R, 00),

XE(R,oo).

lim M(x-z) M >0
x ~ 00 2(x + R) 2

there exists Xo > 0 satisfying

M(x-z) M
----'----'- >- -
2(x+R)"" 4'

If Xo ~ R define '2 := M/4; otherwise put

. {M . {M(X-Z) }}'2 :=mm 4' mm 2(x+R) IXE [R, X o] .

Note that in any case '2 > 0 is satisfied since R was chosen to be greater
than Iz 1+ 1.

Setting , := min {, 1, '2} > 0 we define

p*(X) := p(x) + ,QR(X),
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p* is a polynomial of degree at most n satisfying

f(x) - p*(x) ~ f(x) - p(x) ~ 0,

f(x) - p*(x) ~ f(x) - p(x) - d~ 0,

X E (-00, R]\K,

xEK,

f(x) - p*(x) ~ f(x) - p(x) - ~ (x - xd2
••• (x - x(n_ 1)/2)2 (x - z)

XE (R, 00),

and

This gives the contradiction to p E BLn(f). Therefore, M =°and PI =P2'

(2.2) -00 = a and b < 00. By means of Lemma 2 the nonnegative
functionf - P has at least (n + 1)/2 zeros in (-00, b]. If they are all located
in (-00, b) we immediately obtain PI = P2 by counting the multiple zeros
of PI - P2' In the other case, however, the zeros of PI - P2 are x I < ... <
X(n-I)/2<X(n+ll/2=b and, therefore, there exists a constant MEIR
satisfying

Now, the proof runs in the same way as in (1).

(2.3) -00 < a and b = 00. The proof is essentially the same as in
(2.2). I

Remark. Let us note that it is in general not possible to obtain the
above uniqueness result by using well-known transformation techniques
(cf. [8, Chaps. V and VI]) and then applying the uniqueness theorem for
one-sided LI-approximation by differentiable T-systems on compact inter
vals (cf. [2, Theorem 3.3]) or its generalizations (cf. [13, Theorems 6, 7,
and 8]). This strategy does not work since for fast growing f near +00
and/or -00 we cannot simultaneously guarantee that the transformed
function f is continuous at the end points of the compact interval and that
the transformed polynomials do not vanish identically at these points. If,
however, we allow the transformed polynomials to vanish identically at the
end points of the new compact interval they are no longer a T-system and
even the remarkable Theorems 6 (in case of n even), 7, and 8 of [13]
would not yield a positive answer concerning uniqueness.
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